#include<iostream>#include<opencv2/opencv.hpp>usingnamespace cv;usingnamespace std;intmain(){// Read the image
Mat img =imread("sakura.png");if(img.empty()){
std::cerr <<"Error: Image not found"<< std::endl;return-1;}// Convert to grayscale
Mat gray;cvtColor(img, gray, cv::COLOR_BGR2GRAY);// Parameters for histogramint histSize =256;// number of binsfloat range[]={0,256};// the upper boundary is exclusiveconstfloat* histRange ={range};bool uniform =true, accumulate =false;
Mat hist;calcHist(&gray,1,0,Mat(), hist,1,&histSize,&histRange, uniform,
accumulate);// Display the histogramint hist_w =512, hist_h =400;int bin_w =cvRound((double)hist_w / histSize);
Mat histImage(hist_h, hist_w, CV_8UC1,Scalar(0,0,0));normalize(hist, hist,0, histImage.rows, NORM_MINMAX,-1,Mat());for(int i =1; i < histSize; i++){line(histImage,Point(bin_w *(i -1), hist_h -cvRound(hist.at<float>(i -1))),Point(bin_w *(i), hist_h -cvRound(hist.at<float>(i))),Scalar(255),2,8,0);}imwrite("Histogram.png", histImage);return0;}
C++
執行結果:
a: 輸入。b: 輸出。
Example 2: 處理多個影像
#include<iostream>#include<opencv2/opencv.hpp>#include<vector>usingnamespace cv;usingnamespace std;intmain(){// Load multiple images
vector<Mat> images;
images.push_back(imread("angel.png"));
images.push_back(imread("sakura.png"));// Add more images as needed// Convert images to grayscale and store them in a new vector
vector<Mat> grayImages;for(size_t i =0; i < images.size();++i){
Mat gray;cvtColor(images[i], gray, COLOR_BGR2GRAY);
grayImages.push_back(gray);}// Parameters for histogramint histSize =256;// number of binsfloat range[]={0,256};// the upper boundary is exclusiveconstfloat* histRange ={range};bool uniform =true, accumulate =false;
Mat hist;// Compute histogram for each image and accumulatefor(size_t i =0; i < grayImages.size();++i){
Mat histTemp;calcHist(&grayImages[i],1,0,Mat(), histTemp,1,&histSize,&histRange,
uniform, accumulate);if(i ==0){
hist = histTemp.clone();}else{
hist += histTemp;}}// Display the accumulated histogramint hist_w =512, hist_h =400;int bin_w =cvRound((double)hist_w / histSize);
Mat histImage(hist_h, hist_w, CV_8UC1,Scalar(0,0,0));normalize(hist, hist,0, histImage.rows, NORM_MINMAX,-1,Mat());for(int i =1; i < histSize; i++){line(histImage,Point(bin_w *(i -1), hist_h -cvRound(hist.at<float>(i -1))),Point(bin_w *(i), hist_h -cvRound(hist.at<float>(i))),Scalar(255),2,8,0);}imwrite("AccumulatedHistogram.png", histImage);return0;}
C++
執行結果:
a: 輸入。b: 輸入。c: 輸出。
Example1: 灰度影像
#include<vector>#include<iostream>#include<opencv2/imgcodecs.hpp>#include<opencv2/imgproc.hpp>#include<opencv2/opencv.hpp>#include<matplot/matplot.h>intmain(){namespace plt = matplot;// Read the image
cv::Mat img = cv::imread("sakura.png");if(img.empty()){
std::cerr <<"Error: Image not found"<< std::endl;return-1;}// Convert to grayscale
cv::Mat gray;
cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);// Calculate the histogramint histSize =256;float range[]={0,256};// the upper boundary is exclusiveconstfloat* histRange ={range};bool uniform =true, accumulate =false;
cv::Mat b_hist;
cv::calcHist(&gray,1,0, cv::Mat(), b_hist,1,&histSize,&histRange, uniform, accumulate);// Calculate the total number of pixels by summing the histogramdouble total = cv::sum(b_hist)[0];
std::cout <<"Total pixels: "<< total << std::endl;// Convert histogram to a format suitable for matplotlib-cpp
std::vector<double> histData;
histData.assign(b_hist.begin<float>(), b_hist.end<float>());// Plot the histogram
plt::plot(histData)->line_width(2);
plt::title("Grayscale Histogram");
plt::save("Grayscale Histogram.png");return0;}
C++
執行結果:
a: 輸入。b: 輸出。
Example 3: 彩色影像
#include<vector>#include<opencv2/opencv.hpp>#include<matplot/matplot.h>intmain(){namespace plt = matplot;// Load the image
cv::Mat img = cv::imread("sakura.png");if(img.empty()){
std::cerr <<"Error: Image cannot be loaded."<< std::endl;return-1;}// Split the image into its respective Blue, Green, and Red channels
std::vector<cv::Mat> bgr_planes;
cv::split(img, bgr_planes);// Set the number of bins and the range for the histogramint histSize =256;float range[]={0,256};// the upper boundary is exclusiveconstfloat* histRange ={range};bool uniform =true;bool accumulate =false;// Vector to store histograms// Calculate the histograms for the Blue, Green, and Red channels
cv::Mat b_hist, g_hist, r_hist;
std::vector<cv::Mat> hist_planes ={b_hist, g_hist, r_hist};for(int i =0; i <3; i++){
cv::calcHist(&bgr_planes[i],1,nullptr, cv::Mat(), hist_planes[i],1,&histSize,&histRange, uniform, accumulate);}// Convert histograms to vectors for plotting
std::array color ={"b","g","r"};for(int i =0; i <3; i++){
std::vector<double> hist_vec;
hist_vec.assign(hist_planes[i].begin<float>(), hist_planes[i].end<float>());
plt::plot(hist_vec, color[i])->line_width(2);
plt::hold(plt::on);}
plt::save("Color Histogram.png");return0;}
C++
執行結果:
a: 輸入。b: 輸出。
Example 4: 累積多個影像的 histogram 假設您有一系列影像,並且您想要計算這些影像的 cumulative histogram (累積直方圖)。
#include<vector>#include<iostream>#include<opencv2/opencv.hpp>#include<matplot/matplot.h>intmain(){namespace plt = matplot;
std::vector<std::string> img_paths ={"sakura.png","angel.png"};// Set the number of bins and the range for the histogramconstint channels[]={0};constint histSize[]={256};float hranges[]={0,256};constfloat* ranges[]={hranges};
cv::Mat hist;
cv::Mat cumulative_hist = cv::Mat::zeros(256,1, CV_32F);for(constauto& img_path : img_paths){// Load the image
cv::Mat img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);if(img.empty()){
std::cerr <<"Error: Unable to open image "<< img_path << std::endl;continue;}// Calculate the histograms true false
cv::calcHist(&img,1, channels, cv::Mat(), hist,1, histSize, ranges,true,false);// accumulate is true
cumulative_hist += hist;// Update cumulative histogram
std::cout <<"Current Image Histogram Sum: "<< cv::sum(hist)[0]<<" Cumulative Histogram Sum: "<< cv::sum(cumulative_hist)[0]<< std::endl;}// Convert cumulative histogram to a format suitable for matplotlibcpp
std::vector<double>x(256),y(256);for(int i =0; i <256; i++){
x[i]= i;
y[i]= cumulative_hist.at<float>(i);}
plt::plot(x, y)->line_width(2);
plt::save("Cumulative Histogram for Multiple Images.png");return0;}
C++
執行結果:
Current Image Histogram Sum: 1.83501e+06 Cumulative Histogram Sum: 1.83501e+06
Current Image Histogram Sum: 2.37568e+06 Cumulative Histogram Sum: 4.21069e+06
Plain text
Example 5: 每個 Channel 的 Histogram
#include<iostream>#include<string>#include<vector>#include<opencv2/opencv.hpp>#include<matplot/matplot.h>namespace plt = matplot;/**
* Plots and saves a histogram.
*
* @param data A vector of cv::Mat, each representing histogram data.
* @param title The title of the plot.
* @param xlabel The label for the X-axis.
* @param ylabel The label for the Y-axis.
* @param filename The filename where the plot will be saved.
* @param colors (Optional) A vector of strings representing colors for each
* plot line.
*/staticvoidplot_and_save_histogram(const std::vector<cv::Mat>& data,const std::string& title,const std::string& xlabel,const std::string& ylabel,const std::string& filename,const std::vector<std::string>& colors ={}){if(!colors.empty()){for(size_t i =0; i < data.size();++i){
std::vector<double>x(256),y(256);for(int j =0; j <256;++j){
x[j]= j;
y[j]= data[i].at<float>(j);}
plt::plot(x, y)->color(colors[i]).line_width(2);
plt::hold(plt::on);}}else{
std::vector<double>x(256),y(256);for(int j =0; j <256;++j){
x[j]= j;
y[j]= data[0].at<float>(j);}
plt::plot(x, y)->line_width(2);}
plt::title(title);
plt::xlabel(xlabel);
plt::ylabel(ylabel);
plt::save(filename);}intmain(){// Load the image
cv::Mat img = cv::imread("sakura.png", cv::IMREAD_COLOR);if(img.empty()){
std::cerr <<"Error opening image"<< std::endl;return-1;}
cv::Mat gray;
cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);// Set the number of bins and the range for the histogramint channels[]={0};int histSize[]={256};float range[]={0,256};constfloat* histRange[]={range};// Convert to grayscale and calculate histogram
std::vector<cv::Mat>gray_hist(1);
cv::calcHist(&gray,1, channels, cv::Mat(), gray_hist[0],1, histSize,
histRange,true,false);// Calculate histograms for each color channel
std::vector<cv::Mat>color_hists(3);
std::vector<std::string> color_bgr ={"b","g","r"};for(int i =0; i <3;++i){
cv::calcHist(&img,1,&i, cv::Mat(), color_hists[i],1, histSize, histRange,true,false);}// Plot and save grayscale histogramplot_and_save_histogram(gray_hist,"Grayscale Histogram","PixelIntensity","Frequency","grayscale_histogram.png");// Plot and save color histogramplot_and_save_histogram(color_hists,"Color Histogram","Pixel Intensity","Frequency","color_histogram.png", color_bgr);// Print total pixel count for the grayscale imagedouble totalPixelCount = cv::sum(gray_hist[0])[0];
std::cout <<"Total pixel count: "<< totalPixelCount << std::endl;return0;}
C++
執行結果:
a: 輸入。b: 輸出。c: 輸出。
Example 6: Histogram Equalization (直方圖均衡) 這是透過擴展強度範圍,來提高影像 contrast (對比度) 的過程。
#include<iostream>#include<string>#include<vector>#include<matplot/matplot.h>#include<opencv2/opencv.hpp>namespace plt = matplot;/**
* Plots and saves a histogram.
*
* @param data A vector of cv::Mat, each representing histogram data.
* @param title The title of the plot.
* @param xlabel The label for the X-axis.
* @param ylabel The label for the Y-axis.
* @param filename The filename where the plot will be saved.
* @param colors (Optional) A vector of strings representing colors for each
* plot line.
*/staticvoidplot_and_save_histogram(const std::vector<cv::Mat>& data,const std::string& title,const std::string& xlabel,const std::string& ylabel,const std::string& filename,const std::vector<std::string>& colors ={}){if(!colors.empty()){for(size_t i =0; i < data.size();++i){
std::vector<double>x(256),y(256);for(int j =0; j <256;++j){
x[j]= j;
y[j]= data[i].at<float>(j);}
plt::plot(x, y)->color(colors[i]).line_width(2);
plt::hold(plt::on);}}else{
std::vector<double>x(256),y(256);for(int j =0; j <256;++j){
x[j]= j;
y[j]= data[0].at<float>(j);}
plt::plot(x, y)->line_width(2);}
plt::title(title);
plt::xlabel(xlabel);
plt::ylabel(ylabel);
plt::save(filename);}intmain(){// Load the image
cv::Mat img = cv::imread("sakura.png", cv::IMREAD_COLOR);if(img.empty()){
std::cerr <<"Could not read the image."<< std::endl;return1;}// Convert to grayscale and calculate histogram
cv::Mat gray, equ_img;
cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);
cv::equalizeHist(gray, equ_img);// Set the number of bins and the range for the histogramint histSize =256;float range[]={0,256};constfloat* histRange ={range};bool uniform =true, accumulate =false;
std::vector<cv::Mat>gray_hist(1),equ_hist(1);// Calculate histograms
cv::calcHist(&gray,1,0, cv::Mat(), gray_hist[0],1,&histSize,&histRange,
uniform, accumulate);
cv::calcHist(&equ_img,1,0, cv::Mat(), equ_hist[0],1,&histSize,&histRange,
uniform, accumulate);// Normalize the result to [0, histImage.rows]
cv::normalize(gray_hist[0], gray_hist[0],0, gray.rows, cv::NORM_MINMAX,-1,
cv::Mat());
cv::normalize(equ_hist[0], equ_hist[0],0, equ_img.rows, cv::NORM_MINMAX,-1,
cv::Mat());// Write images
cv::imwrite("Gray Image.png", gray);
cv::imwrite("Equalized Image.png", equ_img);// Plot and save histogramsplot_and_save_histogram(gray_hist,"Grayscale Histogram","Pixel Intensity","Frequency","grayscale_histogram.png");plot_and_save_histogram(equ_hist,"Equalized Histogram","Pixel Intensity","Frequency","equalized_histogram.png");return0;}
#include<opencv2/opencv.hpp>intmain(){// Read the image
cv::Mat image = cv::imread("dark night.jpg");if(image.empty()){
std::cerr <<"Could not read the image."<< std::endl;return1;}// Convert BGR to L*a*b*
cv::Mat imageLab;
cv::cvtColor(image, imageLab, cv::COLOR_BGR2Lab);// Split the Lab image into separate channels
std::vector<cv::Mat>labChannels(3);
cv::split(imageLab, labChannels);// Equalize the histogram of the L channel
cv::equalizeHist(labChannels[0], labChannels[0]);// Merge the modified L channel back with the original a and b channels
cv::merge(labChannels, imageLab);// Convert Lab back to BGR
cv::Mat equalizedLabImage;
cv::cvtColor(imageLab, equalizedLabImage, cv::COLOR_Lab2BGR);
cv::imwrite("Equalized Color Image.png", equalizedLabImage);return0;}
C++
執行結果:
a: 輸入。c: 輸出。
a: 輸入。c: 輸出。
Example 3: 與彩色影像相結合 (HSV)
#include<opencv2/opencv.hpp>intmain(){// Read the image
cv::Mat image = cv::imread("dark night.jpg");if(image.empty()){
std::cerr <<"Could not read the image."<< std::endl;return1;}// Convert BGR to HSV
cv::Mat imageHSV;
cv::cvtColor(image, imageHSV, cv::COLOR_BGR2HSV);// Split the HSV image into separate channels
std::vector<cv::Mat>HSVChannels(3);
cv::split(imageHSV, HSVChannels);// Equalize the histogram of the V channel
cv::equalizeHist(HSVChannels[2], HSVChannels[2]);// Merge the modified V channel back with the original H and S channels
cv::merge(HSVChannels, imageHSV);// Convert HSV back to BGR
cv::Mat equalizedHSVImage;
cv::cvtColor(imageHSV, equalizedHSVImage, cv::COLOR_HSV2BGR);
cv::imwrite("Equalized Color Image.png", equalizedHSVImage);return0;}